To build and modify structures representing propositions in predicate calculus.
- §1. Internal representation
- §4. Walking through propositions
- §8. Validity
- §11. Complexity
- §12. Primitive operations on propositions
- §17. Inserting and deleting atoms
- §20. Miscellaneous further operations
- §21. Inspecting contents
- §22. Matching sequences of atoms
- §31. Bracketed groups
§1. Internal representation. There is no perfectly convenient way to represent propositions. The two obvious strategies are:
- (a) Hold them more or less as written, in a flat sequence of atoms.
- (b) Hold them in a tree which branches at each logical operation.
We follow (a), which is easier to iterate through without tiresome amounts of recursion, but comes at the cost of extra complexity when it comes to grouping the terms — this is why we need the awkward NOT< and NOT> atoms, for example. (b) would almost certainly be better if we needed to accommodate disjunction as well as conjunction, but we do not. The main demerit of (a) is that it is easy to make malformed propositions, so we have to build and edit carefully.
So propositions are represented by the pcalc_prop object at the front, an atomic proposition, and this leads via its next field to a second atomit proposition, and so on. Now there's a natural way to store incomplete propositions and a natural build-point (at the end), and depth-first traverses are easy — just work along from left to right.
- (1) The empty list, a NULL pointer, represents the universally true proposition \(\top\). Asserting it does nothing; testing it at run-time always evaluates to true.
- (2) The conjunction \(\alpha\land\beta\) is almost the concatenation of their linked lists A --> B, except that we must be careful if they appear to have variables in common.
- (3) Negation \(\lnot(\phi)\) is the concatenation NOT< --> P --> NOT>, where P is the linked list for \(\phi\).
- (4) The quantifier \(Q v\in \lbrace v\mid\phi(v)\rbrace\) is QUANTIFIER --> IN< --> P --> IN>, where P is the linked list for \(\phi\).
Conjunction occurs so densely in propositions arising from natural language that we save a lot of memory and fuss by simply implying it: thus "great green dragon" is PREDICATE --> PREDICATE --> PREDICATE, rather than something like PREDICATE --> AND_SIGN --> PREDICATE --> AND_SIGN --> PREDICATE. Disjunction hardly ever occurs, so although the above scheme could simulate it with \(\alpha\lor\beta = \lnot((\lnot\alpha)\land(\lnot\beta))\), we never do.
The following function determines whether or not P1 --> P2 should be understood as a conjunction.
int Propositions::implied_conjunction_between(pcalc_prop *p1, pcalc_prop *p2) { if ((p1 == NULL) || (p2 == NULL)) return FALSE; if (Atoms::is_opener(p1->element)) return FALSE; if (Atoms::is_closer(p2->element)) return FALSE; if (p1->element == QUANTIFIER_ATOM) return FALSE; if (p1->element == DOMAIN_CLOSE_ATOM) return FALSE; return TRUE; }
§3. Purely decoratively, we print some punctuation when logging a proposition; this is chosen to look like standard mathematical notation.
char *Propositions::debugging_log_text_between(pcalc_prop *p1, pcalc_prop *p2) { if ((p1 == NULL) || (p2 == NULL)) return ""; if (p1->element == QUANTIFIER_ATOM) { if (p2->element == DOMAIN_OPEN_ATOM) return ""; return ":"; } if (p1->element == DOMAIN_CLOSE_ATOM) return ":"; if (Propositions::implied_conjunction_between(p1, p2)) { if (Streams::I6_escapes_enabled(DL)) return("&"); since ^ in Inter strings means newline return ("^"); } return ""; }
§4. Walking through propositions. We sometimes need to indicate a position within a proposition — a position not of an atom, but between atoms. Consider the possible places where letters could be inserted into the word "rap": before the "r" (trap), between "r" and "a" (reap), between "a" and "p" (ramp), after the "p" (rapt). Though "rap" is a three-letter word, there are four possible insertion points — so they can't exactly correspond to letters. The convention we use is that a position marker points to the //pcalc_prop// structure for the atom before the position meant: and a NULL pointer in this context means the front position, before the opening atom.
§5. The code needed to walk through a proposition is abstracted by the following macros. Note that we often need to remember the atom before the current one, so we keep that in a spare variable during each traverse. (This saves us having to maintain the proposition data structure as a doubly linked list, which would be harder to edit.)
One macro declares the name of a marker variable to be used when traversing; the other is the necessary loop head. Note that we do not assume that p will still be non-NULL at the end of a loop iteration, just because it was at the beginning: local edits are sometimes performed in the traverse, and it can happen that an edit truncates the proposition so savagely that the loop finds its ground cut out from under it.
define TRAVERSE_VARIABLE(p) pcalc_prop *p = NULL, *p##_prev = NULL; int p##_repeat = FALSE; define TRAVERSE_PROPOSITION(p, start) for (p=start, p##_prev=NULL, p##_repeat = FALSE; p; (p##_repeat == FALSE)?(p##_prev=p, p=(p)?(p->next):NULL):0, p##_repeat = FALSE)
§6. An edit which happens during a traverse is permitted to make any change to the proposition at and beyond the marker position p, but not allowed to change what came before. Since such an edit might leave p pointing to an atom which has been cut, or moved later, we must perform the following macro after edits to restore p. We know that the atom which was before p at the start of the loop has not been changed — since edits aren't allowed there — so p_prev must be correct, and we therefore restore p to the next atom after p_prev.
There is a catch, however: if our edit consists only of deleting some atoms then using PROPOSITION_EDITED correctly resets p to the current atom at the marker position, and that will be the first atom after the ones deleted. If we then just go around the loop, we move on to the next atom; as a result, the first atom after the deleted ones is skipped over. We can avoid this by using PROPOSITION_EDITED_REPEATING_CURRENT instead.
Every routine which simplifies a proposition is expected to have an int * argument called changed: on exit, the int variable this points to should be set if and only if a change has been made to the proposition.
define PROPOSITION_EDITED(p, prop) if (p##_prev == NULL) p = prop; else p = p##_prev->next; *changed = TRUE; define PROPOSITION_EDITED_REPEATING_CURRENT(p, prop) PROPOSITION_EDITED(p, prop) p##_repeat = TRUE;
§7. So we may as well complete the debugging log code now. Note that \(\top\) is logged as just << >>.
void Propositions::log(pcalc_prop *prop) { Propositions::write(DL, prop); } void Propositions::write(OUTPUT_STREAM, pcalc_prop *prop) { TRAVERSE_VARIABLE(p); WRITE("<< "); TRAVERSE_PROPOSITION(p, prop) { char *bridge = Propositions::debugging_log_text_between(p_prev, p); if (bridge[0]) WRITE("%s ", bridge); Atoms::write(OUT, p); WRITE(" "); } WRITE(">>"); }
§8. Validity. Since the proposition data structure lets us build all kinds of nonsense, we'll be much safer if we can check our working — if we can verify that a proposition is valid. But what does that mean? We might mean:
- (i) a proposition is good if its sequence of next pointers all correctly point to pcalc_prop structures, and don't loop around into a circle;
- (ii) a proposition is good if (i) is true, and it is correctly punctuated;
- (iii) a proposition is good if (ii) is true, and it never confuses together two different variables by giving both the same letter;
- (iv) a proposition is good if (iii) is true, and all of its predicates can safely be applied to all of their terms, and we can identify what kind of value each variable ranges over.
These are steadily stronger conditions. The first is a basic invariant of our data structures: nothing failing (i) will ever be allowed to exist, provided the routines in this section are free of bugs. Condition (ii) is called syntactic validity; (iii) is well-formedness; (iv) is type safety. Correct source text eventually makes propositions which have all four properties, but intermediate half-built states often satisfy only (i).
§9. The following examples illustrate the differences. This one is not even syntactically valid:
|IN< --> NOT> --> NOT>|
This one is syntactically valid, but not well-formed:
|EVERYWHERE(x) --> QUANTIFIER x --> PREDICATE(x)|
(If x ranges over all objects at the middle of the proposition, it had better not already have a value, but if it doesn't, what can that first atom mean? It would be like writing the formula \(n + \sum_{n=1}^{10} n^2\), where clearly two different things have been called \(n\).)
And this proposition is well-formed but not type-safe:
|QUANTIFIER(x) --> kind=number(x) --> EVERYWHERE(x)|
(Here x is supposed to be a number, and therefore has no location, but EVERYWHERE can validly be applied only to backdrop objects, so what could EVERYWHERE(x) possibly mean?)
§10. The following tests only (ii), validity. calculus-test is unable to make atoms which fail to pass Atoms::validate, nor can it make some of the misconstructions tested for below, but numerous other defects can be tested:
'new unary even': ok 'new binary sees (none, none)': ok '<< >> is syntactically valid': true '<< even (x) >> is syntactically valid': true '<< kind = number (x) ^ even (x) >> is syntactically valid': true '<< sees (4, 10) >> is syntactically valid': true '<< (4 == 10) >> is syntactically valid': true '<< (x == 10) >> is syntactically valid': true '<< (10 == x) >> is syntactically valid': true '<< (y == x) >> is syntactically valid': true '<< NOT< kind = number (x) ^ even (x) NOT> >> is syntactically valid': true '<< Exists x: even (x) >> is syntactically valid': true '<< NOT> >> is syntactically valid': false - too many close groups '<< Exists x >> is syntactically valid': true '<< ForAll x >> is syntactically valid': false - nonexistential quantifier without domain '<< ForAll x IN< kind = number (x) IN>: even (x) >> is syntactically valid': true '<< NOT< ^ NOT> ^ NOT> ^ NOT< ^ even (x) >> is syntactically valid': false - too many close groups '<< NOT< ^ NOT< ^ even (x) >> is syntactically valid': false - 2 group(s) open '<< NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ NOT< ^ even (x) >> is syntactically valid': false - group nesting too deep
define MAX_PROPOSITION_GROUP_NESTING 100 vastly more than could realistically be used
int Propositions::is_syntactically_valid(pcalc_prop *prop, text_stream *err) { TRAVERSE_VARIABLE(p); int groups_stack[MAX_PROPOSITION_GROUP_NESTING], group_sp = 0; TRAVERSE_PROPOSITION(p, prop) { (1) each individual atom has to be properly built: char *v_err = Atoms::validate(p); if (v_err) { WRITE_TO(err, "atom error: %s", err); return FALSE; } (2) every open bracket must be matched by a close bracket of the same kind: if (Atoms::is_opener(p->element)) { if (group_sp >= MAX_PROPOSITION_GROUP_NESTING) { WRITE_TO(err, "group nesting too deep"); return FALSE; } groups_stack[group_sp++] = p->element; } if (Atoms::is_closer(p->element)) { if (group_sp <= 0) { WRITE_TO(err, "too many close groups"); return FALSE; } if (Atoms::counterpart(groups_stack[--group_sp]) != p->element) { WRITE_TO(err, "group open/close doesn't match"); return FALSE; } } (3) every quantifier except "exists" must be followed by domain brackets: if ((Atoms::is_quantifier(p_prev)) && (Atoms::is_existence_quantifier(p_prev) == FALSE)) { if (p->element != DOMAIN_OPEN_ATOM) { WRITE_TO(err, "quantifier without domain"); return FALSE; } } else { if (p->element == DOMAIN_OPEN_ATOM) { WRITE_TO(err, "domain without quantifier"); return FALSE; } } if ((p->next == NULL) && (Atoms::is_quantifier(p)) && (Atoms::is_existence_quantifier(p) == FALSE)) { WRITE_TO(err, "nonexistential quantifier without domain"); return FALSE; } } (4) a proposition must end with all its brackets closed: if (group_sp != 0) { WRITE_TO(err, "%d group(s) open", group_sp); return FALSE; } return TRUE; }
§11. Complexity. Simple propositions contain only unary predicates or assertions that the free variable has a given kind, or a given value. For example, "a closed lockable door" is a simple proposition, but "four women in a lighted room" is complex. The only simple binary predicate is one which assigns a definite value to x. Examples:
'new unary even': ok 'new binary sees (none, none)': ok '<< >> is complex': false '<< even (x) >> is complex': false '<< kind = number (x) ^ even (x) >> is complex': false '<< sees (4, 10) >> is complex': true '<< (4 == 10) >> is complex': true '<< (x == 10) >> is complex': false '<< (10 == x) >> is complex': false '<< (y == x) >> is complex': true '<< not< kind = number (x) ^ even (x) not> >> is complex': true '<< Exists x: even (x) >> is complex': true '<< Forall x IN< kind = number (x) IN>: even (x) >> is complex': true
int Propositions::is_complex(pcalc_prop *prop) { pcalc_prop *p; for (p = prop; p; p = p->next) { if (p->element == QUANTIFIER_ATOM) return TRUE; if (p->element == NEGATION_OPEN_ATOM) return TRUE; if (p->element == NEGATION_CLOSE_ATOM) return TRUE; if (p->element == DOMAIN_OPEN_ATOM) return TRUE; if (p->element == DOMAIN_CLOSE_ATOM) return TRUE; if ((p->element == PREDICATE_ATOM) && (p->arity == 2)) { if (Atoms::is_equality_predicate(p) == FALSE) return TRUE; if (!(((p->terms[0].variable == 0) && (p->terms[1].constant)) || ((p->terms[1].variable == 0) && (p->terms[0].constant)))) return TRUE; } } return FALSE; }
§12. Primitive operations on propositions. Now for some basic operations, as shown in the following examples:
'new unary even': ok '<< NOT> >> is syntactically valid': false - too many close groups '<< Exists x >> is syntactically valid': true '<< ForAll x >> is syntactically valid': false - nonexistential quantifier without domain '<< ForAll x IN< kind = number (x) IN>: even (x) >> is syntactically valid': true 'set A to << Exists x >>': a set to << Exists x >> 'set B to << Exists x: even (x) >>': b set to << Exists x : even(x) >> 'A concatenate B': << Exists x : Exists x : even(x) >> 'A conjoin B': << Exists x : Exists y : even(y) >> 'A concatenate B is syntactically valid': true 'A conjoin B is syntactically valid': true 'A concatenate B is well-formed': false - x used outside its binding 'A conjoin B is well-formed': true 'set P to << Forall x IN< kind = number (x) IN>: even (x) >>': p set to << ForAll x IN< kind=number(x) IN> : even(x) >> 'copy of P': << ForAll x IN< kind=number(x) IN> : even(x) >> 'negation of P': << NOT< ForAll x IN< kind=number(x) IN> : even(x) NOT> >>
Note that the conjunction of A and B renamed the variable x in B to y, so that it no longer clashed with the meaning of x in A. The concatenation did not, simply writing one after the other.
§13. First, copying, which means copying not just the current atom, but all subsequent ones.
pcalc_prop *Propositions::copy(pcalc_prop *original) { pcalc_prop *first = NULL, *last = NULL, *prop = original; while (prop) { pcalc_prop *copied_atom = Atoms::new(0); *copied_atom = *prop; for (int j=0; j<prop->arity; j++) copied_atom->terms[j] = Terms::copy(prop->terms[j]); copied_atom->next = NULL; if (first) last->next = copied_atom; else first = copied_atom; last = copied_atom; prop = prop->next; } return first; }
§14. Now to concatenate propositions. If \(E\) and \(T\) are both syntactically valid, the result will be, too; but the same is not true of well-formedness, so we need to be careful in using this.
pcalc_prop *Propositions::concatenate(pcalc_prop *existing_body, pcalc_prop *tail) { pcalc_prop *end = existing_body; if (end == NULL) return tail; int sc = 0; while (end && (end->next)) { if (sc++ == 100000) internal_error("malformed proposition"); end = end->next; } end->next = tail; return existing_body; }
§15. And here is a version which protects us:
pcalc_prop *Propositions::conjoin(pcalc_prop *existing_body, pcalc_prop *tail) { TRAVERSE_VARIABLE(p); TRAVERSE_PROPOSITION(p, existing_body) if (p == tail) { Report failure to log15.1; internal_error("conjoin proposition to a subset of itself"); } TRAVERSE_PROPOSITION(p, tail) if (p == existing_body) { Report failure to log15.1; internal_error("conjoin proposition to a superset of itself"); } Binding::renumber_bound(tail, existing_body, -1); existing_body = Propositions::concatenate(existing_body, tail); return existing_body; }
§15.1. Report failure to log15.1 =
LOG("Seriously misguided attempt to conjoin propositions:\n"); LOG("Existing body: $D\n", existing_body); LOG("Tail: $D\n", tail);
- This code is used in §15 (twice).
§16. Negation and quantification can be done with these shorthand functions:
pcalc_prop *Propositions::negate(pcalc_prop *prop) { return Propositions::concatenate( Atoms::new(NEGATION_OPEN_ATOM), Propositions::concatenate( prop, Atoms::new(NEGATION_CLOSE_ATOM))); } pcalc_prop *Propositions::quantify(quantifier *quant, int v, int parameter, pcalc_prop *domain, pcalc_prop *prop) { pcalc_prop *Q = Atoms::QUANTIFIER_new(quant, v, parameter); return Propositions::quantify_using(Q, domain, prop); } pcalc_prop *Propositions::quantify_using(pcalc_prop *Q, pcalc_prop *domain, pcalc_prop *prop) { if (domain) Q = Propositions::concatenate( Q, Propositions::concatenate( Atoms::new(DOMAIN_OPEN_ATOM), Propositions::concatenate( domain, Atoms::new(DOMAIN_CLOSE_ATOM)))); return Propositions::concatenate(Q, prop); }
§17. Inserting and deleting atoms. These operations do what they say, but the result is often syntactically invalid. Handle with care.
'new unary even': ok 'set P to << Forall x IN< kind = number (x) IN>: even (x) >>': p set to << ForAll x IN< kind=number(x) IN> : even(x) >> 'insert << (1 == 2) >> at 0 in P': << ('1' == '2') ^ ForAll x IN< kind=number(x) IN> : even(x) >> 'insert << even (x) >> at 2 in P': << ForAll x IN< even(x) ^ kind=number(x) IN> : even(x) >> 'delete 0 from P': << IN< kind=number(x) IN> : even(x) >> 'delete 4 from P': << ForAll x IN< kind=number(x) IN> >>
§18. Here we insert an atom at a given position, or at the front if the position is NULL.
pcalc_prop *Propositions::insert_atom(pcalc_prop *prop, pcalc_prop *position, pcalc_prop *new_atom) { if (position == NULL) { new_atom->next = prop; return new_atom; } else { if (prop == NULL) internal_error("inserting atom nowhere"); new_atom->next = position->next; position->next = new_atom; return prop; } }
§19. And similarly, with the deleted atom the one after the position given:
pcalc_prop *Propositions::delete_atom(pcalc_prop *prop, pcalc_prop *position) { if (position == NULL) { if (prop == NULL) internal_error("deleting atom nowhere"); return prop->next; } else { if (position->next == NULL) internal_error("deleting atom off end"); position->next = position->next->next; return prop; } }
§20. Miscellaneous further operations. The rest of this section is given over to miscellaneous utility functions:
'new unary even': ok 'new binary sees (none, sees-f1)': ok 'set P to << Forall x IN< kind = number (x) IN>: even (x) >>': p set to << ForAll x IN< kind=number(x) IN> : even(x) >> 'copy of P': << ForAll x IN< kind=number(x) IN> : even(x) >> 'set Q to negation of P': q set to << NOT< ForAll x IN< kind=number(x) IN> : even(x) NOT> >> 'P is a group': false 'Q is a group': true 'unnegation of Q': << ForAll x IN< kind=number(x) IN> : even(x) >> 'remove universal quantifier from P': << kind=number(x) ^ even(x) >> 'set R to delete 4 from P': r set to << ForAll x IN< kind=number(x) IN> >> 'remove close domain from R': << ForAll x IN< kind=number(x) >> 'P contains quantifier': true 'P contains relation': false '<< (1 == 2) >> contains relation': true '<< (1 == 2) ^ even (x) >> contains quantifier': false 'term first cited in << even (x) >>': x 'term first cited in << not< sees (56, 2) not> >>': '56'
§21. Inspecting contents. First, we count the number of atoms in a given proposition. This is used by other parts of Inform as a crude measure of how complicated it is; though in fact it is not all that crude so long as it is applied to a proposition which has been simplified.
int Propositions::length(pcalc_prop *prop) { int n = 0; TRAVERSE_VARIABLE(p); TRAVERSE_PROPOSITION(p, prop) n++; return n; }
§22. Matching sequences of atoms. The following sneakily variable-argument-length function can be used to detect subsequences within a proposition: say, the sequence
QUANTIFIER --> PREDICATE --> anything --> PREDICATE
starting at the current position, which could be tested with:
Propositions::match(p, 4, QUANTIFIER_ATOM, NULL, PREDICATE_ATOM, NULL, NULL, ANY_ATOM_HERE, NULL, PREDICATE_ATOM, &pp, NULL);
As can be seen, each atom is tested with an element number and an optional pointer; when a successful match is made, the optional pointer is set to the atom making the match. PREDICATE_ATOM atoms are followed by a third parameter, which if not NULL requires it to be a unary predicate of that family. (So if the routine returns TRUE then we can be certain that pp points to the PREDICATE_ATOM at the end of the run of four.) There are two special pseudo-element-numbers:
define ANY_ATOM_HERE 0 match any atom, but don't match beyond the end of the proposition define END_PROP_HERE -1 a sentinel meaning "the proposition must end at this point"
int Propositions::match(pcalc_prop *prop, int c, ...) { int outcome = TRUE; va_list ap; the variable argument list signified by the dots va_start(ap, c); macro to begin variable argument processing for (int i = 0; i < c; i++) { int a = va_arg(ap, int); pcalc_prop **atom_p = va_arg(ap, pcalc_prop **); if (atom_p != NULL) *atom_p = prop; up_family *req_up = NULL; if (a == PREDICATE_ATOM) req_up = va_arg(ap, up_family *); switch (a) { case ANY_ATOM_HERE: if (prop == NULL) outcome = FALSE; break; case END_PROP_HERE: if (prop != NULL) outcome = FALSE; break; default: if (prop == NULL) outcome = FALSE; else if (prop->element != a) outcome = FALSE; else if (req_up) { if (prop->arity == 1) { unary_predicate *up = RETRIEVE_POINTER_unary_predicate(prop->predicate); if (up->family != req_up) outcome = FALSE; } else outcome = FALSE; } break; } if (prop) prop = prop->next; } va_end(ap); macro to end variable argument processing return outcome; }
§23. Here we run through the proposition looking for either a given element, or a given arity, or both:
pcalc_prop *Propositions::prop_seek_atom(pcalc_prop *prop, int atom_req, int arity_req) { TRAVERSE_VARIABLE(p); TRAVERSE_PROPOSITION(p, prop) if (((atom_req < 0) || (p->element == atom_req)) && ((arity_req < 0) || (p->arity == arity_req))) return p; return NULL; } pcalc_prop *Propositions::prop_seek_up_family(pcalc_prop *prop, up_family *f) { TRAVERSE_VARIABLE(p); TRAVERSE_PROPOSITION(p, prop) if ((p->element == PREDICATE_ATOM) && (p->arity == 1)) { unary_predicate *up = RETRIEVE_POINTER_unary_predicate(p->predicate); if (up->family == f) return p; } return NULL; }
§24. Seeking different kinds of atom is now easy:
int Propositions::contains_binary_predicate(pcalc_prop *prop) { if (Propositions::prop_seek_atom(prop, PREDICATE_ATOM, 2)) return TRUE; return FALSE; } int Propositions::contains_quantifier(pcalc_prop *prop) { if (Propositions::prop_seek_atom(prop, QUANTIFIER_ATOM, -1)) return TRUE; return FALSE; } pcalc_prop *Propositions::composited_kind(pcalc_prop *prop) { pcalc_prop *k_atom = Propositions::prop_seek_up_family(prop, kind_up_family); if (KindPredicates::is_composited_atom(k_atom) == FALSE) k_atom = NULL; return k_atom; } int Propositions::contains_nonexistence_quantifier(pcalc_prop *prop) { while ((prop = Propositions::prop_seek_atom(prop, QUANTIFIER_ATOM, 1)) != NULL) { quantifier *quant = prop->quant; if (quant != exists_quantifier) return TRUE; prop = prop->next; } return FALSE; }
§25. Here we try to find out the kind of value of variable 0 without the full expense of typechecking the proposition:
kind *Propositions::describes_kind(pcalc_prop *prop) { pcalc_prop *p = prop; while ((p = Propositions::prop_seek_up_family(p, kind_up_family)) != NULL) { if (Terms::variable_underlying(&(p->terms[0])) == 0) return KindPredicates::get_kind(p); p = p->next; } parse_node *val = Propositions::describes_value(prop); if (val) return VALUE_TO_KIND_FUNCTION(val); return NULL; }
§26. And, similarly, the actual value it must have:
parse_node *Propositions::describes_value(pcalc_prop *prop) { pcalc_prop *p; int bl = 0; for (p = prop; p; p = p->next) switch (p->element) { case NEGATION_OPEN_ATOM: bl++; break; case NEGATION_CLOSE_ATOM: bl--; break; case DOMAIN_OPEN_ATOM: bl++; break; case DOMAIN_CLOSE_ATOM: bl--; break; default: if (bl == 0) { if (Atoms::is_equality_predicate(p)) { if ((p->terms[0].variable == 0) && (p->terms[1].constant)) return p->terms[1].constant; if ((p->terms[1].variable == 0) && (p->terms[0].constant)) return p->terms[0].constant; } } break; } return NULL; }
§27. Finding an adjective is easy: it's a predicate of arity 1.
#ifdef CORE_MODULE int Propositions::contains_adjective(pcalc_prop *prop) { for (pcalc_prop *p = prop; p; p = p->next) if ((p->element == PREDICATE_ATOM) && (p->arity == 1)) { unary_predicate *up = RETRIEVE_POINTER_unary_predicate(p->predicate); if (up->family == adjectival_up_family) return TRUE; } return FALSE; } int Propositions::count_adjectives(pcalc_prop *prop) { int ac = 0; for (pcalc_prop *p = prop; p; p = p->next) if ((p->element == PREDICATE_ATOM) && (p->arity == 1) && (Terms::variable_underlying(&(p->terms[0])) == 0)) { unary_predicate *up = RETRIEVE_POINTER_unary_predicate(p->predicate); if (up->family == adjectival_up_family) ac++; } return ac; } #endif
§28. The following searches not for an atom, but for the lexically earliest term in the proposition:
pcalc_term Propositions::get_first_cited_term(pcalc_prop *prop) { TRAVERSE_VARIABLE(p); TRAVERSE_PROPOSITION(p, prop) if (p->arity > 0) return p->terms[0]; internal_error("Propositions::get_first_cited_term on termless proposition"); return Terms::new_variable(0); never executed, but needed to prevent gcc warnings }
§29. Here we attempt, if possible, to read a proposition as being either {\it adjective}(\(v\)) or \(\exists v: {\it adjective}(v)\), where the adjective can be also be read as a noun, and if so we return a constant term \(t\) for that noun; or if the proposition isn't in that form, we return \(t=x\), that is, variable 0.
#ifdef CORE_MODULE pcalc_term Propositions::convert_adj_to_noun(pcalc_prop *prop) { pcalc_term pct = Terms::new_variable(0); if (prop == NULL) return pct; if (Atoms::is_existence_quantifier(prop)) prop = prop->next; if (prop == NULL) return pct; if (prop->next != NULL) return pct; if ((prop->element == PREDICATE_ATOM) && (prop->arity == 1)) { unary_predicate *up = RETRIEVE_POINTER_unary_predicate(prop->predicate); if (up->family == adjectival_up_family) return Terms::adj_to_noun_conversion(up); } if (KindPredicates::is_kind_atom(prop)) { kind *K = KindPredicates::get_kind(prop); property *pname = Properties::property_with_same_name_as(K); if (pname) return Terms::new_constant(Rvalues::from_property(pname)); } return pct; } #endif
§30. We often form propositions which are really lists of adjectives, and the following are useful for looping through them:
#ifdef CORE_MODULE unary_predicate *Propositions::first_unary_predicate(pcalc_prop *prop, pcalc_prop **ppp) { prop = Propositions::prop_seek_up_family(prop, adjectival_up_family); if (ppp) *ppp = prop; if (prop == NULL) return NULL; return Atoms::to_adjectival_usage(prop); } unary_predicate *Propositions::next_unary_predicate(pcalc_prop **ppp) { if (ppp == NULL) internal_error("bad ppp"); pcalc_prop *prop = Propositions::prop_seek_up_family((*ppp)->next, adjectival_up_family); *ppp = prop; if (prop == NULL) return NULL; return Atoms::to_adjectival_usage(prop); } #endif
§31. Bracketed groups. The following routine tests whether the entire proposition is a single bracketed group. For instance:
NOT< --> PREDICATE --> NOT>
would qualify. Note that detection succeeds only if the parentheses match, and that they may be nested.
int Propositions::is_a_group(pcalc_prop *prop, int governing) { int match = Atoms::counterpart(governing), level = 0; if (match == 0) internal_error("Propositions::is_a_group called on unmatchable"); TRAVERSE_VARIABLE(p); if ((prop == NULL) || (prop->element != governing)) return FALSE; TRAVERSE_PROPOSITION(p, prop) { if (Atoms::is_opener(p->element)) level++; if (Atoms::is_closer(p->element)) level--; } if ((p_prev->element == match) && (level == 0)) return TRUE; return FALSE; }
§32. The following removes matched parentheses, leaving just the interior:
pcalc_prop *Propositions::remove_topmost_group(pcalc_prop *prop) { TRAVERSE_VARIABLE(p); if ((prop == NULL) || (Propositions::is_a_group(prop, prop->element) == FALSE)) internal_error("tried to remove topmost group which wasn't there"); LOGIF(PREDICATE_CALCULUS_WORKINGS, "ungrouping proposition: $D\n", prop); prop = prop->next; TRAVERSE_PROPOSITION(p, prop) if ((p->next) && (p->next->next == NULL)) { p->next = NULL; break; } LOGIF(PREDICATE_CALCULUS_WORKINGS, "to ungrouped result: $D\n", prop); return prop; }
§33. The main application of which is to remove negation:
pcalc_prop *Propositions::unnegate(pcalc_prop *prop) { if (Propositions::is_a_group(prop, NEGATION_OPEN_ATOM)) return Propositions::remove_topmost_group(prop); return NULL; }
§34. More ambitiously, this removes matched parentheses found at any given point in a proposition (which can continue after the close bracket).
pcalc_prop *Propositions::ungroup_after(pcalc_prop *prop, pcalc_prop *position, pcalc_prop **last) { TRAVERSE_VARIABLE(p); pcalc_prop *from; int opener, closer, level; LOGIF(PREDICATE_CALCULUS_WORKINGS, "removing frontmost group from proposition: $D\n", prop); if (position == NULL) from = prop; else from = position->next; opener = from->element; closer = Atoms::counterpart(opener); if (closer == 0) internal_error("tried to remove frontmost group which doesn't open"); from = from->next; prop = Propositions::delete_atom(prop, position); remove opening atom if (from->element == closer) { the special case of an empty group prop = Propositions::delete_atom(prop, position); remove opening atom goto Ungrouped; } level = 0; TRAVERSE_PROPOSITION(p, from) { if (p->element == opener) level++; if (p->element == closer) level--; if (level < 0) { if (last) *last = p_prev; prop = Propositions::delete_atom(prop, p_prev); remove closing atom goto Ungrouped; } } internal_error("tried to remove frontmost group which doesn't close"); Ungrouped: LOGIF(PREDICATE_CALCULUS_WORKINGS, "to ungrouped result: $D\n", prop); return prop; }
§35. Occasionally we want to strip away a "for all", and since that is always followed by a domain specification, we must also ungroup this:
pcalc_prop *Propositions::trim_universal_quantifier(pcalc_prop *prop) { if ((Atoms::is_for_all_x(prop)) && (Propositions::match(prop, 2, QUANTIFIER_ATOM, NULL, DOMAIN_OPEN_ATOM, NULL))) { prop = Propositions::ungroup_after(prop, prop, NULL); prop = Propositions::delete_atom(prop, NULL); LOGIF(PREDICATE_CALCULUS_WORKINGS, "Propositions::trim_universal_quantifier: $D\n", prop); } return prop; }
pcalc_prop *Propositions::remove_final_close_domain(pcalc_prop *prop, int *move_domain) { if (move_domain) *move_domain = FALSE; TRAVERSE_VARIABLE(p); TRAVERSE_PROPOSITION(p, prop) if ((p->next == NULL) && (p->element == DOMAIN_CLOSE_ATOM)) { if (move_domain) *move_domain = TRUE; return Propositions::delete_atom(prop, p_prev); } return prop; }